High Resolution Electron-Microscope Studies on a Quenched (Ni_{0.5}Cr_{0.5})₇Nb₆ Alloy

L. DOUXING,* L. STENBERG,† AND S. ANDERSSON

Inorganic Chemistry 2, Chemical Center, P.O. Box 740, S-220 07 Lund, Sweden

Received December 15, 1982; in revised form March 18, 1983

Crystals of a $(Ni_{0.5}Cr_{0.5})_7Nb_6$ alloy have been studied with a high-resolution electron microscope. Crystals of the Friauf-Laves and μ phases were identified in the sample, which is in agreement with the X-ray powder pattern. Planar defects of different kinds were easily and frequently observed. The structural model of defects have been derived via chemical twinning and intergrowth operations.

Introduction

High-resolution electron microscopy has been very useful in the study of the real structure of crystals on an atomic scale. Two-dimensional lattice images recorded with a high-resolution electron microscope not only give the average structure, but also reveal the different kinds of structural defects. The high-resolution electron-microscopy technique has been applied to the study of some of the so-called tetrahedrally close-packed alloy structures. Two-dimensional lattice images of regular and defect structures were found for the μ phase in Fe-Mo and Mo-Co-Si alloys with a highresolution electron microscope (1, 2). Different crystallographic operations and intergrowth have been used to describe the so-called tetrahedrally close-packed alloy structures (3). This concept will be used here since it is general and nearly exact in

* On leave from the Institute of Metal Research, Academia Sinica, Shenyang, China.

† To whom correspondence should be addressed.

deriving crystal structures and their planar defects. The Mg-based pseudo-binary Friauf-Laves phases have been extensively investigated and several stacking variants and defects have been found by Y. Komura *et al.* (4).

The aim of the present investigation was to study the nature of the defect structures of the Friauf-Laves and μ phases as they occur in the (Ni_{0.5}Cr_{0.5})₇Nb₆ alloy with a high-resolution electron microscope.

Experimental Procedure

Alloys having the nominal composition $(Ni_{0.5}Cr_{0.5})_7Nb_6$ were prepared by melting weighed amounts of pure Nb, Ni, and Cr in an argon-filled electric arc furnace. The sample was sealed in a silica tube, which was evacuated and annealed at 1055°C for 24 hr. The powder pattern of the sample obtained in a Guinier-Hägg focusing camera using Cu K\alpha radiation showed the presence of the Friauf-Laves and μ phases.

The crystals were crushed and ground in

a hardened steel mortar and then thin fragments were collected on a holey carbon film supported on a copper grid. The perforated carbon films with the sample were transferred to a JEOL 200CX electron microscope, equipped with a top entry high-resolution $\pm 10^{\circ}$ double tilting stage and operated at 200 kV. Crystals of the Friauf-Laves and μ phase were identified in the sample, which is in good agreement with the X-ray powder pattern. Using selected area diffraction and a goniometer stage, the orientation of the crystals were adjusted, so that the [110] of the hexagonal cell for Friauf-Laves and μ phase was parallel to the incident electron beam. The alignment procedure had to be repeated for different parts of the crystal, since a slight bending is always present. High-resolution lattice images were recorded at a magnification of 690,000, using an objective aperture corresponding to a radius of 0.34 Å⁻¹ in the diffraction pattern. The computer simulated images were obtained using the multislice method with a program written by M. A. O'Keefe.

Results

The MgZn₂-type Friauf-Laves Phase

The crystal structure of the Friauf-Laves phase was found by Friauf (5) and Laves (6). The atomic arrangement in the MgZn₂type Friauf-Laves structure projected along [110] can be described as consisting of uncentered trigonal bipyramids sharing edges and corners generating pentagonal antiprisms. This can be seen in the inserted drawing in the high-resolution micrograph (Fig. 1) of a perfectly ordered structure of

FIG. 1. Crystal structure image (CSI) of a perfectly ordered $(Ni,Cr)_7Nb_6$ crystal with MgZn₂ structure in the [110] direction. Crystal structure drawing and calculated image are inserted in upper right and lower left corners, respectively.

 $MgZn_2$ type in the [110] direction. The white dots correspond to the position of the pentagonal antiprisms, which was confirmed by calculation with the multislice method; see insertion in lower left corner of Fig. 1. The following parameters were used for the calculation.

Spherical aberration coefficient = 1.2 mm, slice thickness = 4.861 Å, the focus spread due to chromatic aberration = 30 Å, incident beam convergence = 0.6 mrad, and the number of diffracted beams included in the dynamical diffraction calculation = 1027. The images were computed for a range -500 to -800 Å. The best agreement between experimental and calculated image was made with a defocus of -600 Å and a crystal thickness of 38.9 Å and this was used to produce the inserted image.

Planar defects of different kinds were easily and frequently observed. Figure 2 shows a two-dimensional crystal structure image of a well-resolved planar defect in MgZn₂-type Friauf-Laves phase structure.

On the basis of the correlation of the image contrast with structural features, the structure of the defects can be derived from the observed image contrast. A structural model of the defect is inserted in Fig. 2. The structure of the defect can be described as an intergrowth between Friauf-Laves and three sheets of μ -phase-type structure (see below). Such an intergrowth structure has not yet been found in crystals of the Friauf-Laves phase structure. The crystal structure image in Fig. 3 shows another kind of defect, revealing an intergrowth between Friauf-Laves and four sheets of doubletwinned μ -phase structural type. A model of the atomic arrangement of the defect area is shown in the figure, where the arrows show the twin-planes.

The μ Phase

The structure of the μ phase was first determined by Westgren (7) and was later refined for the isotypic Co₇Mo₆ (8). The μ phase structure can be seen as an

FIG. 2. $(Ni,Cr)_7Nb_6$ crystal with MgZn₂ structure, but with three slabs of the μ -phase structure penetrating the crystal.

intergrowth of sheets of the Zr_4Al_3 , viewed along [110], and MgCu₂ structure projected along [110] (3). An interesting variation of the μ -phase structure has been found by A. Simon *et al.* (9) for the structure of Cs₆K₇.

The crystal structure image of a μ -phase crystal together with the structure drawing is shown in Fig. 4. The white dots indicate the sites of the pentagonal antiprisms generated by the structure. A calculated image, using the multislice method as mentioned above (also inserted in Fig. 4), agrees well with the experimental result.

In a previous paper (2) it was reported that the μ -phase structure could accommodate disorder in four simple ways, viz., twin operation and three kinds of intergrowth with a MgCu₂, MgZn₂, and Zr₄Al₃ structural type. The high-resolution image of the present observations has enabled us to obtain much more direct evidence of the presence and structure of defects of the μ phase. Figure 5 shows a crystal structure image of a twin defect with the atomic arrangement given in the inserted drawing. If a double twin operation is carried out in the two adjacent planes in [001] on the structure, the atomic arrangement of this type of defect can be achieved. Another way to describe this is obtained if the μ -phase structure were to intergrow with the Cs_6K_7 structural type. Another kind of well-resolved planar defect in a crystal of μ phase is shown in Fig. 6. The white dots in a region of a defect form a zigzag row revealing the presence of an intergrowth between the μ -phase structure and three sheets of the MgZn₂-type structure. The atomic arrange-

FIG. 4. CSI of a perfect $(Ni,Cr)_7Nb_6$ crystal with the μ -phase structure. The inserted calculated image was made with focus = -600 Å and thickness = 39.56 Å (8 slices).

FIG. 5. Twin defects in a crystal with μ -phase structure. Arrows indicate twin-planes.

ment of the defect region derived from the image contrast is given in the inserted drawing.

Conclusions

It is clear that high-resolution electron microscopy is of great value for the investigation of the local defect structures of crystals of tetrahedrally close-packed alloys, which cannot be determined by other indirect methods. The Friauf-Laves and μ phases studied contain different kinds of defects. We have presented models for a variety of defect structures, which were derived by a direct correlation between contrast in a high-resolution lattice image and structural features. The structure of defects can be explained as derived from chemical twinning and intergrowth operations.

Acknowledgments

This work was supported by the Swedish National Science Research Council. L. Douxing thanks the fellowship from the Royal Swedish Academy of Engineering Sciences.

References

- 1. L. STENBERG, Chem. Scr. 14, 219 (1978-1979).
- 2. L. STENBERG AND S. ANDERSSON, J. Solid State Chem. 28, 269 (1979).
- 3. S. ANDERSSON, J. Solid State Chem. 23, 191 (1978).

- 4. Y. KITANO, Y. KOMURA, H. KAJIWARA, AND E. WATANABE, Acta Crystallogr. Sect. A 36, 16 (1980).
- 5. J. B. FRIAUF, Phys. Rev. 29, 34 (1927).
- 6. F. LAVES AND H. WITTE, Metallwirt. 15, 840 (1936).
- 7. A. WESTGREN, Tokohu University, Honda-Mem, 852 (1936).
- 8. J. B. FORSYTH AND L. M. D'ALTE DA VEIGA, Acta Crystallogr. 15, 543 (1962).
- 9. A. SIMON, W. BRÄMER, B. HILLENKÖTTER, AND H.-J. KULLMANN, Z. Anorg. Allg. Chem. 419, 253 (1976).